Biodiversity loss is driven by human behavior, but there is uncertainty about the effectiveness of behavior-change programs in delivering benefits to biodiversity. To demonstrate their value, the biodiversity benefits and cost-effectiveness of behavior changes that directly or indirectly affect biodiversity need to be quantified. We adapted a structured decision-making prioritization tool to determine the potential biodiversity benefits of behavior changes. As a case study, we examined 2 hypothetical behavior-change programs– wildlife gardening and cat containment– by asking experts to consider the behaviors associated with these programs that directly and indirectly affect biodiversity. We assessed benefits to southern brown bandicoot (Isoodon obesulus) and superb fairy-wren (Malurus cyaneus) by eliciting from experts estimates of the probability of each species persisting in the landscape given a range of behavior-change scenarios in which uptake of the behaviors varied. We then compared these estimates to a business-as-usual scenario to determine the relative biodiversity benefit and cost-effectiveness of each scenario. Experts projected that the behavior-change programs would benefit biodiversity and that benefits would rise with increasing uptake of the target behaviors. Biodiversity benefits were also predicted to accrue through indirect behaviors, although experts disagreed about the magnitude of additional benefit provided. Scenarios that combined the 2 behavior-change programs were estimated to provide the greatest benefits to species and be most cost-effective. Our method could be used in other contexts and potentially at different scales and advances the use of prioritization tools to guide conservation behavior-change programs.